Publication:
Esterification of ethanol and acetic acid catalysed by immobilized candida rugosa lipase

Loading...
Thumbnail Image
Date
2021-06-01
Authors
Mohd Radzi, Nurul Adila
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Abstract
Ethyl acetate is a versatile ester used as solvent and diluents. The conventional esterification reaction of ethanol and acetic acid was catalysed by sulphuric acid, H2SO4. Enzyme is a sustainable approach for the esterification reaction to produce ethyl acetate. In this study, the esterification reaction of ethanol and acetic acid catalysed by immobilized candida rugosa lipase (CRL) in n-hexane was optimized. The free CRL was immobilized by physical adsorption on support, Amberlite XAD7 which resulted in specific activity of 0.13 U/mg. The effect of reaction time, temperature, substrate molar ratio and enzyme loading were studied. Maximum conversion of 88% was attained at 2 hours of reaction time, temperature of 50°C, acetic acid to ethanol ratio of 0.5 and enzyme loading of 80 U. Next, the kinetic modelling of bi-substrate enzymatic transesterification of ethyl butyrate was studied using secondary data from research paper. The data was fitted to the rate equation of the kinetic model using non linear regression to obtain the kinetic parameter. Based on the Lineweaver-Burk double reciprocal plot, the transesterification reaction follows ping-pong bi-bi mechanism with competitive inhibition by ethyl caprate. The kinetic parameters obtained was, Vmax = 1.1918 M, Km,A = 0.0117 M, Km,B = 0.1674, Ki,A = 0.1091 M, and Ki,B = 0.0031.
Description
Keywords
Citation