Automatic multi-objective clustering algorithm using hybrid particle swarm optimization with simulated annealing.
dc.contributor.author | Abubaker, Ahmad Asad | |
dc.date.accessioned | 2018-07-26T04:35:00Z | |
dc.date.available | 2018-07-26T04:35:00Z | |
dc.date.issued | 2016-12 | |
dc.description.abstract | Pengelompokan adalah suatu teknik pelombongan data. Di dalam bidang set data tanpa selia, tugas mengelompok ialah dengan mengumpul set data kepada kelompok yang bermakna. Clustering is a data mining technique. In the field of unsupervised datasets, the task of clustering is by grouping the dataset into meaningful clusters. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/6042 | |
dc.language.iso | en | en_US |
dc.publisher | Universiti Sains Malaysia | en_US |
dc.subject | algorithm | en_US |
dc.subject | hybrid | en_US |
dc.title | Automatic multi-objective clustering algorithm using hybrid particle swarm optimization with simulated annealing. | en_US |
dc.type | Thesis | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: