Probabilistic contextual models for Object class recognition in uncontrived images.
dc.contributor.author | Hasanat, Mozaherul Hoque Abul | |
dc.date.accessioned | 2018-11-09T02:12:04Z | |
dc.date.available | 2018-11-09T02:12:04Z | |
dc.date.issued | 2011-05 | |
dc.description.abstract | Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecaman kelas objek. Context is a vital element in deriving meaningful explanation of an image for both biological, as well as, artificial vision systems. This thesis proposes to model contextual relation among real-world objects in uncontrived images in order to improve object class recognition performance. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/7038 | |
dc.language.iso | en | en_US |
dc.publisher | Universiti Sains Malaysia | en_US |
dc.subject | Contextual model | en_US |
dc.subject | Uncontrived images | en_US |
dc.title | Probabilistic contextual models for Object class recognition in uncontrived images. | en_US |
dc.type | Thesis | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: