Publication:
Combustion characterization and optimization of mixture biomass producer gas and methane in a constant volume combustion chamber system for fuel combustion efficiency enchancement

datacite.subject.fosoecd::Engineering and technology::Mechanical engineering
dc.contributor.authorTeh Jun Sheng
dc.date.accessioned2025-05-19T03:34:32Z
dc.date.available2025-05-19T03:34:32Z
dc.date.issued2023-03-01
dc.description.abstractMost of the world’s energy requirements are still derived from natural resources. This will result in a catastrophic energy crisis with negative environmental consequences. The increased energy supply will result in greater consumption of non-renewable sources. The production of biomass producer gas (BPG) from biomass gasification has received significant attention for reducing global emissions as an alternative fuel because of the depletion of non-renewable resources. The properties of biomass feedstocks significantly influence combustion characteristics. The objective of this experimental study was to determine the combustion characteristics: flame propagation speed, chamber pressure trace and emissions of BPG at different equivalence ratio to obtain the lower chamber peak pressure and greenhouse gas emissions. Using the direct visualization technique, an optical constant volume combustion chamber (CVCC) was developed to measure combustion characteristics. Liquid petroleum gas (LPG) was used to compare chamber pressure and flame propagation speed in the CVCC calibration. In comparison to wood pellet (WP), coconut husk (CH), and palm kernel shell (PKS), the chamber peak pressure at 𝜙 equal to 1 of CH for the combustion of BPG is the lowest at 20.84 bar. At 𝜙 of 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3, the chamber peak pressure of CH was discovered to be around 17.77, 18.12, 18.81, 20.84, 20.39, 17.25, and 16.37 bar. Compared to the other two types of BPG, CH produces the lowest emission of CO2 and CO, at 2.03% and 0.02%, respectively. From the literature review, increasing CH4 content in the fuel can increase the mole fraction of H, O2, and OH radicals and reaction rates in the flame, further accelerating the flame of the mixtures. Therefore, an optimization study is needed to determine the higher performance combustion of BPG with an increase in the composition of methane. The combustion experiment study was optimized with 17 designed experiments, 0.9 to 1.1 equivalence ratio, and the 0 to 0.1 mole fraction of methane fuel. The BPG-methane-air mixture, according to optimization analysis, achieves the fastest flame propagation speed and the lower chamber peak pressure at 𝜙 equal to 1 and a mole fraction of methane fuel of 0.083. Compared to the BPG-air mixture (𝜙 equal to 1), which had a chamber peak pressure of 20.84 bar, the average results of the optimum configuration parameters reveal a lower peak pressure was 18.97 bar. Comparison of the chamber peak pressure between BPG-methane-air mixture and BPG-air mixture varied by approximately 9.39%. In this context, the gross heat release rate (HRR) is observed to be around 94.44 kW, which represents a 20% reduction when compared to CH fuel. However, there is a slight increase in the emissions of CO and CO2, with a rise of 0.01% and 5%, respectively. In conclusion, the optimal mixture of BPG and methane fuel provides the optimum flame propagation speed with lower chamber peak pressure than BPG.
dc.identifier.urihttps://erepo.usm.my/handle/123456789/21699
dc.language.isoen
dc.titleCombustion characterization and optimization of mixture biomass producer gas and methane in a constant volume combustion chamber system for fuel combustion efficiency enchancement
dc.typeResource Types::text::thesis::master thesis
dspace.entity.typePublication
oairecerif.author.affiliationUniversiti Sains Malaysia
Files