Synthesis And Characterization Of Sb2o3 Nanoparticles By Chemical Reduction Method

dc.contributor.authorChin, Hui Shun
dc.date.accessioned2018-07-16T06:53:34Z
dc.date.available2018-07-16T06:53:34Z
dc.date.issued2012-03
dc.description.abstractAntimony trioxide (Sb2O3) nanoparticles with particle size less than 100 nm, spherical in shape and well distributed were successfully synthesized by chemical reducing method. Antimony trichloride (SbCl3) was reduced by hydrazine in the presence of sodium hydroxide (NaOH) as catalyst in ethylene glycol (EG) at 120 oC for 60 minutes. In order to synthesis Sb2O3 nanoparticles with smaller particle size (2 - 12 nm), spherical in shape and well distribution, effects of hydrazine concentration ([N2H5OH]/[SbCl3] = 0.75, 5, 10, 20 and 30), NaOH concentration ([NaOH]/[SbCl3] = 0, 1, 3 and 5), precursor concentration ([SbCl3]/[N2H5OH] = 0.05, 0.1, 0.15 and 0.2), reaction temperature (60, 90, 120 and 150oC), reaction time (30, 60, 90 and 120 minutes) and boiling temperature (25, 50, 80 and 110oC) were investigated. Transmission electron microscope (TEM), selected area electron diffraction (SAED) pattern and high resolution electron microscope (HRTEM) were employed to study the morphology and crystallinity of the nanoparticles. It was observed that the particle size decreased and remained constant when concentration of hydrazine ([N2H5OH]/[SbCl3]) ≥ 10. Increasing the concentration of NaOH and precursor, as well as reaction temperature and reaction time, larger particles were formed. Further study on the crystallinity and phase of the nanoparticles was assisted by X-ray diffraction (XRD). XRD revealed a cubic phase of Sb2O3 (ICDD file no. 00-043-1071) with lattice spacing of 1.68 Å. However, diffraction peaks of SbCl3 were detected when hydrazine was added into an un-boiled mixture, which consists of both SbCl3 and NaOH in EG. It was found that adding hydrazine to the un-boiled mixture influenced the mechanism of reduction of SbCl3 and eventually affected the production of Sb2O3 nanoparticles. From the ultraviolet-visible (UV-vis) spectrophotometer analysis, maximum absorption wavelengths of Sb2O3 nanoaparticles were occurred from 280 to 318 nm. The results showed that smaller particles were showed lower UV-vis absorption wavelength, while larger particles were showed higher UV-vis absorption wavelength. Therefore, correlation between UV-vis absorption wavelengths of the nanoparticles and their sizes has been established.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/5931
dc.language.isoenen_US
dc.publisherUniversiti Sains Malaysiaen_US
dc.subjectSynthesis and characterization of sb2o3 nanoparticlesen_US
dc.subjectby chemical reduction methoden_US
dc.titleSynthesis And Characterization Of Sb2o3 Nanoparticles By Chemical Reduction Methoden_US
dc.typeThesisen_US
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: