Simultaneous Removal Of Ammonium And Phosphate Using Magnesium Chloride Modified Zeolite

dc.contributor.authorGunasegran, Vikneshan
dc.date.accessioned2022-10-17T07:00:08Z
dc.date.available2022-10-17T07:00:08Z
dc.date.issued2021-08-01
dc.description.abstractThis study analyzed individual and simultaneous sorption of ammonium (NH4+) and phosphate (PO43-) and their mechanisms together with their major operating parameters such as initial nutrient concentration, types of zeolites, and addition of salt onto Mg2+- modified zeolites. The phosphate reported a removal efficiency of -62.68% due to poor sorption for individual sorption, and 13.49% for simultaneous removal. Besides, the removal efficiency of ammonium in individual and simultaneous sorption is 59.98% and 35.87%, respectively. The ammonium and phosphate removal efficiency decreases as the initial nutrient concentration increases. Moreover, the mordenite typed zeolites showed much better adsorption for both individual and simultaneous with a higher removal efficiency of 59.98% and 35.87%, respectively for ammonium at an initial concentration of 20 ppm. However, the zeolite-Y had more adsorption capacity towards phosphate with a higher removal efficiency of 19.91%. The individual presence of Na+ had a significantly negative effect on the removal of ammonium as Na+ possesses small ionic radii than NH4+, which reduces ammonium uptakes. The pseudo-second-order model could describe the adsorption of nutrients with higher (R2 ≥ 0.99), where chemical actions mainly govern the process. The Langmuir model can be acceptably applied to fit the experimental data with a higher correlation coefficient (R2 = 0.995) for individual ammonium sorption, suggesting that the adsorption is a monolayer coverage. The addition of MgCl2 to the reaction system promoting the desorption process for both separate and simultaneous processes revealed the possibility of regeneration and reusability of the adsorbent.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/16404
dc.language.isoenen_US
dc.publisherUniversiti Sains Malaysiaen_US
dc.titleSimultaneous Removal Of Ammonium And Phosphate Using Magnesium Chloride Modified Zeoliteen_US
dc.title.alternativeThis study analyzed individual and simultaneous sorption of ammonium (NH4 + ) and phosphate (PO4 3- ) and their mechanisms together with their major operating parameters such as initial nutrient concentration, types of zeolites, and addition of salt onto Mg2+ -modified zeolites. The phosphate reported a removal efficiency of -62.68% due to poor sorption for individual sorption, and 13.49% for simultaneous removal. Besides, the removal efficiency of ammonium in individual and simultaneous sorption is 59.98% and 35.87%, respectively. The ammonium and phosphate removal efficiency decreases as the initial nutrient concentration increases. Moreover, the mordenite typed zeolites showed much better adsorption for both individual and simultaneous with a higher removal efficiency of 59.98% and 35.87%, respectively for ammonium at an initial concentration of 20 ppm. However, the zeolite Y had more adsorption capacity towards phosphate with a higher removal efficiency of 19.91%. The individual presence of Na+ had a significantly negative effect on the removal of ammonium as Na+ possesses small ionic radii than NH4 + , which reduces ammonium uptakes. The pseudo-second-order model could describe the adsorption of nutrients with higher (R2 ≥ 0.99), where chemical actions mainly govern the process. The Langmuir model can be acceptably applied to fit the experimental data with a higher correlation coefficient (R2 = 0.995) for individual ammonium sorption, suggesting that the adsorption is a monolayer coverage. The addition of MgCl2 to the reaction system promoting the desorption process for both separate and simultaneous processes revealed the possibility of regeneration and reusability of the adsorbenten_US
dc.typeOtheren_US
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: