Mechanical And Thermal Properties Of Nanoparticles Filled Silicone Rubber Composites

dc.contributor.authorKong, Siew Mui
dc.date.accessioned2019-01-15T07:19:23Z
dc.date.available2019-01-15T07:19:23Z
dc.date.issued2012-07
dc.description.abstractIn the first stage of current study, three types of nano fillers which are boron nitride (BN), silicon nitride (SN) and nanodiamond (ND) have been used to fabricate silicone rubber composites. Among the three fillers studied, ND has emerged as the best filler in enhancing the thermal conductivity, tensile strength and strain at break of silicone rubber composites. Therefore, ND was chosen as filler in the next stage of research. In the second stage, hybrid filler composites were fabricated by combining same type of filler with different sizes and shapes at different filler ratio. The fillers are nanodiamonds (NDs) which denoted as ND (4-15 nm), ND1 (100 nm) and ND2 (200nm). ND exhibits spherical shape while ND1 and ND2 exhibit irregular shape. All the testing results showed that hybrid ND/ND2 composite presented better performance in thermal conductivity, thermal stability and tensile strength than hybrid ND/ND1 composites. In the third stage, different loading of multiwalled carbon nanotubes (MWCNT) also added into the hybrid ND/ND2 composites at filler ratio of 1/3. Incorporation of 0.5 vol. % of MWCNT into ND/ND2 composites has increased 19 % thermal conductivity of hybrid fillers composites. Moreover, addition of MWCNT also increased the dielectric constant of ND/ND2 composites significantly. However, the dielectric loss of hybrid MWCNT/ND/ND2 composites is high at the filler loading of 0.5 vol. % to 1.0 vol. % which is not suitable to be applied as thermal interface material (TIM). The effects of MWCNT on thermal stability and tensile properties are small and negligible.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/7574
dc.language.isoenen_US
dc.publisherUniversiti Sains Malaysiaen_US
dc.subjectMechanical And Thermal Propertiesen_US
dc.subjectNanoparticles Filled Silicone Rubberen_US
dc.titleMechanical And Thermal Properties Of Nanoparticles Filled Silicone Rubber Compositesen_US
dc.typeThesisen_US
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: