Reduced set kernel principal component analysis (rskpca) algorithm for palm print based mobile biometric system

dc.contributor.authorNoor Salwani Ibrahim
dc.date.accessioned2021-04-19T04:40:04Z
dc.date.available2021-04-19T04:40:04Z
dc.date.issued2015-05-01
dc.description.abstractThe emerging of internet and wireless dimension has brought a new era in biometrics technology. Instead of operating the biometric system with static biometric device, mobile biometric system can be implemented and this approach leads to more efficient and reliable implementation. In this study mobile biometric system based on palm print modality is developed. However, in order to execute mobile biometric system, efficient processing time and storage are some of the important factors that need to be considered. In this research, algorithms involving palm print feature processing are evaluated so as to obtain optimum time and memory consumption. Several feature processing methods including Region of Interest (ROI), Principal Component Analysis (PCA), and Kernel Principal Component Analysis (KPCA) are investigated. A new approach in feature extraction called Reduced-Set Kernel Principal Component Analysis (RSKPCA) is proposed to speed up the processing in feature extraction. The proposed RSKPCA employs a Reduced Set Density Estimate (RSDE) to define a weighted gram matrix. As a result, the RSKPCA only extracts the most relevant and important information from a dataset. 2400 palm print images which were collected from three types of android mobile are employed. Experimental evaluation shows that the proposed RSKPCA has better performance compared to the ROI, PCA and KPCA with the Genuine Acceptance Rates (GAR) is more than 98% and the matching time is less than 0.5s. In this project, it has been proven that the proposed RSKPCA as feature extraction gives the best result for mobile biometric system based on palm print.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/12933
dc.language.isoenen_US
dc.titleReduced set kernel principal component analysis (rskpca) algorithm for palm print based mobile biometric systemen_US
dc.typeThesisen_US
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: