Experimental and computational study of flow over a rotating cylinder with surface roughnes

Loading...
Thumbnail Image
Date
2016-03-01
Authors
Mohamad Tarmizi Abu Seman
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Experimental and computational approaches are taken in this thesis, to understand how rotation and surface roughness affects the dynamics of a cylinder in flow. The roughness was simulated by attaching three types of sandpaper with various roughness, to the cylinder surface. The experiment takes place in a wind tunnel, applying a free stream velocity within the range from 0.65 to 13.21 m/s. The range of average rough cylinder (Ra) is 5.0μm to 77.0μm and the range of rotation speeds of up to 400 rev/m. The study focuses on calculating the lift and the drag forces using a “Light Weight Smart Motor (LWSM)” and a rotating two-dimensional circular cylinder. The cross-section of the test section for the open circuit wind tunnel is 300mm by 300mm. Apart from testing lift and drag forces, the flow behind the rotating cylinder is measured, and images of vortices shedding are captured during experimentation. A wide range of data is gathered by repeating the observations for various Reynolds numbers. Furthermore, Computational Fluid Dynamics (CFD) simulations verify vortex shedding and provide an indication of where to place the experimental device, comprised of small obstacles, to achieve the best suppression of vortex shedding. ANSYS FLUENT® commercial CFD software simulated the flows with respect to rotation and surface roughness. A comparison of the simulation and the experimental results shows close agreement, with approximately 10% variation. For Re > 20000, the rotation has an extremely small effect on the overall forces acting on the flow field around the cylinder with surface roughness.
Description
Keywords
Citation