Publication:
Bioactive glass-cordierite ceramics for biomaterials application

Thumbnail Image
Date
2022-06-01
Authors
Mohd Mokhtar, Ahmad Kamil Fakhruddin
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Abstract
Bioactive glass (BG) is one of the biomaterials that are widely used in various biomedical applications such as dental implant, due to its excellent ability to bind with tissue through a bonding formation with apatite layer. However, BG demonstrated low mechanical strength to withstand external force. In this study, bioactive glass-cordierite ceramic (BG-cord) composite was developed to overcome this issue. BG and cordierite were synthesized using glass melting method prior to BG-cord fabrication in pellet shape. In the fabrication process, the milling time of cordierite (0.5 to 5 h), the composition of BG and cordierite, and the sintering temperature of BG-cord (600 – 1000 ºC) were studied. An improvement in the mechanical properties of BG was observed with the addition of cordierite, proven by the superior diametral tensile strength (DTS) of BG-cord to BG. The DTS of BG increased from 6.29 MPa to 14.01 MPa upon milling with 30% cordierite for 3 hours. A further increase in DTS value from 14.01 MPa to 30.54 MPa was recorded when the BG-cord was sintered from 600 °C to 925 °C. The optimum BG-cord exhibited physical characteristics of 2.33 g/cm3 bulk density, 8.92% porosity, 30.54 MPa DTS, 93.75 MPa compressive strength, and 153.93 Hv hardness. A positive response of bioactivity performance was observed in the BG-cord with apatite formation as detailed in the in-vitro analysis using scanning electron microscope (SEM). X-ray diffraction (XRD) analysis revealed apatite peaks proved the formation of apatite. The increase of intensity of P-O and C-O spectra from Fourier transform infrared (FTIR) analysis after bioactivity test also proved the apatite formation. As a conclusion, the BG-cord produced from the current study has potential application as a dental implant material.
Description
Keywords
Citation